A Level Geography – Year 13

Topic: Water

Week	Lesson	Lesson Title	Key concepts	Independent Learning
				Student to complete as advised by teacher
The global hydrological cycle is of enormous importance to life on earth	1	The hydrological cycle as a system	The global hydrological cycle's operation as a closed system (inputs, outputs, stores and flows) driven by solar energy and gravitational potential energy.	
	2	Water stores and fluxes	The relative importance and size (percentage contribution) of the water stores (oceans, atmosphere, biosphere, cryosphere, groundwater and surface water) and annual fluxes between atmosphere, ocean and land.	
	3	The global water budget	The global water budget limits water available for human use and water stores have different residence times; some stores are non-renewable (fossil water or cryosphere losses).	
The drainage basin is an open system within the global hydrological cycle.	1	The drainage basin	The hydrological cycle is a system of linked processes: inputs (precipitation patterns and types: orographic, frontal, convectional) flows (interception, infiltration, direct runoff, saturated overland flow, through flow, percolation, groundwater flow) and outputs (evaporation, transpiration and channel flow).	
	2	Physical factors affecting the drainage basin	Physical factors within drainage basins determine the relative importance of inputs, flows and outputs (climate, soils ,vegetation, geology, relief).	

	3	Human disruption to the drainage basin	Humans disrupt the drainage basin cycle by accelerating processes (deforestation, changing land use) and creating new water storage reservoirs or by abstracting water. Amazonia case study	
The hydrological cycle influences water budgets	1	Water budget	Water budgets which show the annual balance between inputs(precipitation) and outputs (evapotranspiration) and their impact on soil, water availability and are influenced by climate type: tropical temperate or polar examples	
and river systems at a local scale.	2	River Regimes	River regimes indicate the annual variation of discharge of a river and result from the impact of climate, geology and soils as shown in regimes from contrasting river basins. Yukon, Amazon, Indus	
	3	Storm hydrographs	The shape of storm hydrographs depends on physical features of drainage basins (size, shape, drainage density, rock type, soil, relief and vegetation) as well as human factors (land use and urbanisation). (P: the role of planners in managing land use).	
4 Deficits within the hydrological	1	Droughts	The courses of drought, both meteorological and hydrological :short-term precipitation deficit, longer term trends, and ENSO cycles.	
cycle result from physical processes but can have significant	2	Human activities causing water deficit	The contribution human activity makes to the risk of drought: over-abstraction of surface water resources and ground water aquifers. Sahelian or Australia drought	
impacts.	3	The impacts of drought on ecosystem	The impacts of drought on ecosystem functioning (wetlands, forest stress) and the resilience of these ecosystems	
5	1	Meteorological causes of flooding	Meteorological causes of flooding, including intense storms leading to flash flooding, unusually heavy or	

Surpluses within the hydrological cycle can lead			prolonged rainfall, extreme monsoonal rainfall and snowmelt. c.	
to flooding, with significant impacts for people.	2	Human actions that can exacerbate flood risk	Human actions that can exacerbate flood risk (changing landuse within the river catchment, mismanagement of riversusing hard engineering systems.)	
	3	The impacts of flooding	Damage from flooding has both environmental impacts (soils and ecosystems) and socio-economic impacts (economic activity, infrastructure and settlement).UK flood events2007 or 2012)	
Climate change may have significant impacts on the hydrological cycle globally and locally.	1	Climate change and the hydrological cycle	Climate change affects inputs and outputs within the hydrological cycle: trends in precipitation and evaporation.	
	2	Climate change and impacts on stores and flows.	Climate change affects stores and flows, size of snow and glacier mass, reservoirs, lakes, amount of permafrost, soil moisture levels as well as rates of runoff and stream flow.	
	3	Enso Cycle	Climate change resulting from short-term oscillations (ENSO cycles) and global warming increase the uncertainty in the system; this causes concerns over the security of water suppliesprojections of future drought and flood	
7 There are	1	Mismatch between water supply and demand	The growing mismatch between water supply and demand has led to a global pattern of water stress (below 1,700 m³per person) and water scarcity (below 1000 m³ per	

physical causes and human causes of water insecurity.	2	The physical and human causes of water insecurity	The causes of water insecurity are physical climate variability, salt water encroachment at coast) as well as human (③ over abstraction from rivers, lakes and groundwater aquifers, water contamination from agriculture, industrial water pollution).	
	3	Water insecurity	The finite water resource faces pressure from rising demand(increasing population, improving living standards, industrialisation and agriculture), which is increasingly serious in some locations and is leading to increasing risk of water insecurity. projections of future water scarcity	
There are consequences and risks associated with water insecurity.	1	Physical and economic scarcity	The causes of and global pattern of physical water scarcity and economic scarcity and why the price of water varies globally.	
	2	Water supply and economic development	The importance of water supply for economic development (industry, energy supply, agriculture) and human wellbeing (sanitation, health and food preparation); the environmental and economic problems resulting from inadequate water.	
	3	Conflicts in transboundary water usage	The potential for conflicts to occur between users within a country, and internationally over local and trans-boundary water sources Nile <i>role of different players</i>	
There are different approaches to managing water	1	Hard engineering scheme Desalinisation plant in China and Israel	The pros and cons of the techno-fix of hard engineering schemes to include water transfers, mega dams and desalination plants Water transfers in China. (UNECE), Water Convention, Helsinki, and the Water Framework Directive and Hydropower, Berlin -role of players in reducing water conflict risk	

supply, some more sustainable than others.	2	Sustainable water management schemes	The value of more sustainable schemes of restoration of water supplies and water conservation (smart irrigation, recycling of water Singapore. <i>contrasting attitudes to water supply</i>	
	3	Integrated drainage basin management	Integrated drainage basin management for large rivers Nile or Colorado and water sharing treaties and frameworks (United Nations Economic Commission for Europe)	
10	1	Assessment	Revision	
	2	Assessment	Revision	
	3	Assessment	Revision	
11	1	Assessment	Revision	
	2	Assessment	Exam	
	3	Assessment	Feedback and redraft	