A Level Geography – Year 13

Topic	: Carbon	Cycle
-------	----------	-------

Week	Lesson	Lesson Title	Key concepts	Independent Learning
				Student to complete as advised by teacher
Most global carbon is locked in terrestrial	1	Biochemical Carbon Cycle	The biogeochemical carbon cycle consists of carbon stores of different sizes (terrestrial, oceans and atmosphere), with annual fluxes between stores of varying size (measured inPg/Gt), rates and on different timescales. (1)	
stores as part of the long-term geological	2	Geological carbon cycle	Most of the earth's carbon is geological, resulting from the formation of sedimentary carbonate rocks (limestone) in the oceans and biologically derived carbon in shale, coal and other rocks.	
cycle.	3	Chemical carbon cycle	Chemical weathering removes carbon from silicate rocks. The carbon ends up in the ocean as carbonate rock. Carbon is released via outgassing at ocean ridges, hotspot volcanoes and subduction zones.	
2 Biological processes sequester carbon on land and in the oceans on shorter timescales.	1	Carbon Sequesters	Phytoplankton sequester atmospheric carbon during photosynthesis in surface ocean waters; carbonate shells/tests move into the deep ocean water through the carbonate pump and action of the thermohaline circulation	
	2	Short term carbon cycle	Terrestrial primary producers sequester carbon during photosynthesis; some of this carbon is returned to the atmosphere during respiration by consumer organisms.	
	3	Biological carbon cycle	Biological carbon can be stored as dead organic matter in soils, or returned to the atmosphere via biological decomposition over several years.	

3 A balanced carbon cycle is	1	A balanced carbon cycle	The concentration of atmospheric carbon (carbon dioxide and methane) strongly influences the natural greenhouse effect, which in turn determines the distribution of temperature and precipitation. Ocean and terrestrial photosynthesis play an important role in regulating the composition of the atmosphere. Soil	
important in sustaining other			health is influenced by stored carbon, which is important for ecosystem productivity.	
earth systems but is increasingly altered by human activities.	3	Human disruption to the carbon cycle balance.	The process of fossil fuel combustion has altered the balance of carbon pathways and stores with implications for climate ,ecosystems and the hydrological cycle	
4 Energy security is a key goal for countries, with most relying on fossil fuels.	1	Energy consumption	Consumption (per capita and in terms of units of GDP) and energy mix (domestic and foreign, primary and secondary energy, renewable versus non-renewable).	
	2	Physical factors affecting the access to energy consumption	Access to and consumption of energy resources depends on physical availability, cost, technology, public perception, level of economic development and environmental priorities, national comparisons: USA versus France	
	3	Energy players and their role	Energy players (<i>P: role of TNCs, The Organisation of the</i> <i>Petroleum Exporting Countries (OPEC), consumers,</i> <i>governments)</i> have different roles in securing pathways and energy supplies	
5 Reliance on fossil fuels to drive economic		Mismatch of energy supply and demand	There is a mismatch between locations of conventional fossil fuel supply (oil, gas, coal) and regions where demand is highest, resulting from physical geography.	
		Energy patheways	Energy pathways (pipelines, transmission lines, shipping routes, road and rail) are a key aspect of security but can be prone to disruption especially as conventional fossil fuel sources depleted. Russian gas to Europe	

development		Unconventional	The development of unconventional fossil fuel energy	
is		fossil fuels	resources (tar sands, oil shale, shale gas, deep water oil)	
still the global			has social costs and benefits, implications for the carbon	
norm.			cycle, and consequences for the resilience of fragile	
			environments. Canadian tar sands, USA fracking,	
			Brazilian deep water oil) (P: role of business in	
			developing reserves, versus environmental groups and affected communities)	
6	1	Renewable and	Renewable and recyclable energy (nuclear power, wind	
0	-		power and solar power) could help decouple fossil fuel	
There are		recyclable energy	from economic growth; these energy sources have costs	
alternatives to			and benefits economically, socially, and environmentally	
fossil fuels			and in terms of their contribution they can make to	
but			energy security .Changing UK energy mix case study	
each has	2	Bio fuels	Biofuels are an alternative energy source that are	
costs			increasing globally; growth in biofuels however has	
and benefits.			implications for food supply as well as uncertainty over	
			how 'carbon neutral' they are. Biofuels in Brazil case	
-			study	
	3	Carbon Capture and	Radical technologies, including carbon capture and	
		alternative energy	storage and alternative energy sources (hydrogen fuel	
		alternative energy	cells, electric vehicles) could reduce carbon emissions but	
		-	uncertainty exists as to how far this is possible	
7	1	Human factors	Growing demand for food, fuel and other resources	
		affecting carbon	globally has led to contrasting regional trends in land-use cover(deforestation, afforestation, conversion of	
Biological		stores	grasslands to farming) affecting terrestrial carbon stores	
carbon cycles		300103	with wider implications for the water cycle and soil health.	
and the water	2	Ocean acidification	Ocean acidification, as a result of its role as a carbon sink,	
cycle are	Z	Ocean acidification	is increasing due to fossil fuel combustion and risks	
threatened by			crossing the critical threshold for the health of coral reefs	
human			and other marine ecosystems that provide vital	
activity.			ecosystem services	
	3	Climate change and	Climate change, resulting from the enhanced greenhouse	
		-	effect, may increase the frequency of drought due to	
		the carbon cycle	shifting climate belts, which may impact on the health of	
			forests as carbon stores. (③ Amazonian drought events)	
8	1	Kuznets curve model	Forest loss has implications for human wellbeing but there	
			is evidence that forest stores are being protected and	
			even expanded, especially in countries at higher levels of	

There are implications for			development (environmental Kuznets' curve model).	
for human wellbeing from the degradation of the water and carbon cycles	2	Artic case study	Increased temperatures affect evaporation rates and the quantity of water vapour in the atmosphere with implications for precipitation patterns, river regimes and water stores(cryosphere and drainage basin stores) Arctic case study	
	3	Threats to ocean health	Threats to ocean health pose threats to human wellbeing, especially in developing regions that depend on marine resources as a food source and for tourism and coastal protection.	
9 Further planetary warming risks large-scale release of stored carbon, requiring responses from different players at different scales.	1	Tipping point	Future emissions, atmospheric concentration levels and climate warming are uncertain owing to natural factors (the role of carbon sinks), human factors (economic growth, population, energy sources) and feedback mechanisms (carbon release from peatlands and permafrost, and tipping points, including forest die back and alterations to the thermohaline circulation	
	2	Adaptation strategies	Adaptation strategies for a changed climate (water conservation and management, resilient agricultural systems, land-use planning, flood-risk management, solar radiation management) have different costs and risks.	
	3	Re-balancing the carbon cycle	Re-balancing the carbon cycle could be achieved through mitigation (carbon taxation, renewable switching, energy efficiency, afforestation, carbon capture and storage) but this requires global scale agreement and national actions both of which have proved to be problematic. (A: attitudes of different countries, TNCs and people)	
10	1	Assessment	Revision	
-	2	Assessment	Revision	
	3	Assessment	Revision	

11	1	Assessment	Revision	
	2	Assessment	Exam	
	3	Assessment	Feedback and redraft	